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Multiple scattering of classical waves in systems with liquidlike correlations:
Analytical and numerical results for isotropic scatterers

C. J. Walden*
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom

~Received 2 September 1997!

By exploiting the analogy between multiple-scattering theory and the Ornstein-Zernike equation of liquid-
state theory an analytical solution to the effective medium approximation is obtained in the case of isotropic
scatterers, using a simple model pair-correlation functiong(R). Results are presented for model scatterers the
diameterd of which may be changed without simultaneously altering the scattering strength. Specifically,d is
selected to produce a scattering efficiency close to that observed for a Mie scatterer, and the effect of increasing
the packing fractionh considered. Numerical results are then presented for more realistic forms ofg(R), and
possible extensions to the effective medium approximation which incorporate recurrent scattering processes
discussed.@S1063-651X~98!07002-0#

PACS number~s!: 42.25.Bs, 78.20.Ci, 61.20.2p
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I. INTRODUCTION

The study of waves in random media has attracted m
attention recently, stimulated in part by the prospects
achieving a classical analog of Anderson localization@1–3#.
The search for this effect is of particular interest due to
absence of competing mechanisms of the kind found in
electronic counterpart@4,5#.

In selecting candidate systems, one is led, on the bas
the independent scatterer approximation@6#, to consider scat-
terers at or near resonance. At a frequencyv the most naı¨ve
Ioffe-Regel criterion@7# kls&1, with k5v/c0, c0 being the
phase velocity in the host medium andl s'(rss)

21 the scat-
tering mean free path, then predicts localization for su
ciently high number densitiesr. In principle, of course,l s

contains no information about localization, and more rig
ous criteria arise from an examination ofl tr , the transport
mean free path@8#.

Even if we content ourselves with a calculation ofl s or
the extinction mean free pathl e , to which it is equivalent in
the absence of absorption, there are two problems with
above independent-scattering argument. The first conc
the fact that a resonant scatterer exhibits a scattering c
sectionss substantially larger than its geometrical cross s
tion pa2. Therefore dependent-scattering corrections@9# be-
come necessary, since theoptical volumes of the scatterer
begin to overlap at rather modest number densities. The
ond difficulty is that asr is increased it becomes importa
to account for correlations in the positions of the scattere

In the weak scattering regime this latter effect is relativ
easy to incorporate. For example, Saulnieret al. @10# have
considered correlation corrections to independent scatte
for a suspension of latex spheres in water, and obtained g
agreement with experiment for both the extinction (l e) and
transport (l tr) mean free paths. On the other hand, for stro
scatterers such as the titanium dioxide (TiO2) dispersions
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studied by van der Market al. @11# it is difficult to disen-
tangle the effects of correlations from those of depend
scattering.

Of course, if the scatterers are sufficiently strong, o
may approach a localization threshold at a volume fract
for which correlations can be safely neglected. Analysis
this regime has been very successfully achieved using a p
scatterer model by van Tiggelen and co-workers@8,12–14#.
They point out that an argument of the Ioffe-Regel type
better phrased in terms ofg[p0l s , where p0 /k5neff the
effective refractive index of the scatterer-filled medium
Their findings suggest that the effects of dependent sca
ing are always sufficient to maintaing above the localization
threshold. In fact, by consideringl tr , they show that this
threshold is more accurately located atg5gc50.972, at
least for isotropic~and uncorrelated! scatterers.

However, since resonant dielectric scatterers typically
hibit scattering efficienciesQs[ss /pa2 of between 5 and
10, it is of interest to consider the effect of introducing p
sitional correlations into this model. To this end, we imagi
each model scatterer to be embedded within a physic
impenetrable~but optically inert! sphere. A similar approach
has been adopted by van Tiggelen and Lagendijk@15#. Their
analysis is exact to second order inr, and is capable of
yielding both scattering and transport properties. Howev
they are restricted to modest packing fractionsh. In this
paper we employ a different approach, which, while not e
act to any given order inr, does allow us to study the be
havior at largeh.

Our calculations focus on the determination ofl s rather
thanl tr , the latter being considerably more difficult to obta
when correlations are present. Hence, we may obtain a Io
Regel numberg, but have less confidence in locating a l
calization threshold. Nevertheless, the results are instruc
as they suggest regimes worthy of further investigation.

The starting point for any such calculation is th
~ensemble-averaged! amplitude Green function. To deter
mine this exactly requires specification of all the correlati
functions that are necessary to fully characterize the rand
medium. In practice only the pair-correlation functiong(R)

s-
2377 © 1998 The American Physical Society



e

ng
hib
e
t

d

u

th
r-
I

ep
at
o

in
re
w

ac
er

e-

o

es

t-
m

r

rre-
e-
zed

of
s is

a
ws

lace

om

lly
dy
cal
rms

2378 57C. J. WALDEN
@16# is available, and one has to resort to approximate th
ries, such as the well-known quasicrystalline~QCA! @17# and
effective medium~EMA! @18# approximations.

A previous paper@19# ~hereinafter referred to as I! con-
cerned the formal manipulation of the multiple-scatteri
theory for scalar waves in a discrete random medium ex
iting liquidlike correlations. It was demonstrated that a on
to-one correspondence exists between that formalism and
Ornstein-Zernike~OZ! equation of liquid-state theory@16#.
This leads to a natural distinction between adirect @C(R)#
and atotal @H(R)# propagator, the former being identifie
with what is sometimes termed the medium propagator@18#.
A number of existing theories may then be viewed as clos
approximations to this integral equation.

The results presented in this paper were derived using
formalism. Section II provides a brief review of the key fo
mulas, restricting attention to isotropic scatterers. Section
concerns the so-called hole-correction~HC! approximation,
for which the pair-correlation function is modeled by a st
function. In this case we may determine the direct propag
for the EMA in closed form. We employ a method based
the factorization scheme of Baxter@20# to determineC(R)
self-consistently. For hard-sphere packing fractionsh.1/8
the HC model does not correspond to any physically atta
able arrangement of scatterers. In this regime we requi
better description of the correlation structure. In Sec. IV
present results obtained using a more realisticg(R). Finally,
in Sec. V we discuss the limitations of the present appro
and suggest extensions which incorporate repeated scatt
processes omitted in this treatment.

II. MULTIPLE-SCATTERING THEORY
FOR ISOTROPIC SCATTERERS

We now provide a brief outline of the OZ formalism pr
sented in I.

It is convenient to introduce the medium path operator
Roth @18#,

t̂~R2R8!5K (
ab

d~R2Ra!Tabd~R82Rb!L , ~1!

in terms of which the~ensemble-averaged! total T matrix of
the system is

T̂[^T̂ &5E t̂~R2R8!dR dR8. ~2!

This is related to the average amplitude Green functionĜ
and self-energyŜ ~in operator form! via

Ĝ[^Ĝ&5Ĝ01Ĝ0T̂Ĝ0

5Ĝ01Ĝ0ŜĜ5@Ĝ0
212Ŝ#21, ~3!

Ĝ0 being the host Green function. Dependence of all th
quantities on the host wave numberk is implicit. The scat-
tering path operatorT̂ab acts on the wave incident at sca
tererb ~located atRb) and provides the wave scattered fro
o-
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scatterera, incorporating all intermediate~multiple! scatter-
ing. It may be expanded as a series in single-scattereT

matricest̂a[ t̂ (Ra),

T̂ab5 t̂adab1~12dab! t̂aĜ0 t̂b1 (
gÞa
gÞb

t̂aĜ0 t̂gĜ0 t̂b1•••.

~4!

Following I we write

t̂~R2R8!5r t̂ ~m!~R!d~R2R8!

1r t̂ ~m!~R!Ĥ~R2R8!r t̂ ~m!~R8!, ~5!

where the total propagator

Ĥ~R2R8!5Ĉ~R2R8!

1E Ĉ~R2R9!r t̂ ~m!~R9!Ĥ~R92R8!dR9.

~6!

HereĈ(R2R8) is the direct~or medium! propagator, and in
diagrammatic terms corresponds to a sum of strongly i
ducible graphs. Formal manipulation of the multipl
scattering series yields an equation for the renormali
single-scattererT matrix t̂ (m)(R) of the form

t̂ ~m!~R!5F11 t̂ ~m!~R!E Ĥ~R2R8!r t̂ ~m!~R8!Ĝ0dR8G t̂~R!.

~7!

For calculational purposes one generally expands eachT ma-
trix in a set of partial waves with an origin at the center
the scatterer. In the case of isotropic scatterers this serie
truncated at thel 50 or s-wave term. Taken together with
condition that the scatterers should not overlap, this allo
us to write Eqs.~6! and ~7! as

H~R!5C~R!1rt ~m!E C~ uR2R8u!H~R8!dR8, ~8!

t ~m!5F114prt ~m!2E
0

`

R82H~R8!G0~R8!dR8G t, ~9!

with

G0~R!52
eik1R

R
~k15k1 i0!. ~10!

Heret[t0(k,k) andt (m)[t0
(m)(k,k) are thes-waveT matri-

ces~now simply complex numbers! evaluated on shell. No-
tice that isotropy of the averaged system allows us to rep
the vector arguments of thes-wave propagatorsH, C, and
G0 by their moduli.

Up to this point our analysis has been exact, apart fr
the assumption of isotropic scatterers. However,C(R) in-
volves an infinite series of terms, which it is not genera
possible to resum. In the customary spirit of many-bo
theory one may hope to identify, on the strength of physi
arguments, or otherwise, certain infinite subclasses of te
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57 2379MULTIPLE SCATTERING OF CLASSICAL WAVES IN . . .
which may be resummed. The remaining terms are then
carded in the hope that they do not represent a signific
contribution.

Among the class of theories which may be derived in t
way, the effective medium approximation is one of the m
successful. In resummed form it may be summarized via
closure relation

C~R!5g~R!G0~R!1h~R!@H~R!2C~R!# ~EMA!,
~11!

whereg(R) @5h(R)11# is the pair-correlation function.
Notice that in the limit of point scatterers, for whic

h(R)→0 for all R, C(R) reduces to the bare propagat
G0(R). This is a reasonable assumption, provided that
scatterers are sufficiently weak that their optical volumes
not overlap in this limit. Where this is not the case, o
needs to incorporate terms which describe the renorma
tion of C(R) via repeated scattering between pairs of sc
terers. Such terms are included in the treatment of
Tiggelen et al. @8,12,14#, which, however, expressly omit
correlations. It is possible to graft pairwise correlations o
such a theory@15#, and thereby study effects which accom
pany the onset of short-range order. However, such an
proach is not readily disposed towards studying the beha
at large packing fractions. In particular, one expects sign
cant contributions from recurrent scattering paths which
volve more than two correlated scatterers. These are in
porated quite naturally in the EMA, which employs th
Kirkwood decomposition@16# for higher order correlation
functions.

Our principal task in this paper is to determine the wa
number for the ensemble-averaged~or coherent! wave. This
is found by examining the long-distance behavior of the to
Green function, or equivalently from the dominant pole
the plane-wave matrix elementG(p,k)[^puĜ(k)up&. In
fact, the singularities ofG(p,k) coincide with those of

H~p,k![
4p

p E
0

`

RH~R;k!sinpR dR ~12!

~the dependence onk now being made explicit!. This may be
seen in the following way. Since the asymptotic form
C(R) coincides with that ofG0(R), it is instructive to sepa-
rate outC0(R)[C(R)2G0(R). Taking the Fourier trans
form of Eq.~8! @with C0(p,k) andG0(p,k) defined by anal-
ogy with H(p,k)] it now follows that

H~p,k!5
~k122p2!C0~p,k!14p

~k122p2!@12rt ~m!C0~p,k!#24prt ~m!
,

~13!

where we used the result

G0~p,k!5
4p

k122p2
. ~14!

Now from Eqs.~2!, ~3!, and~5! we have
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G~p,k!5G0~p,k!

1G0~p,k!@rt ~m!1r2t ~m!2H~p,k!#G0~p,k!,

~15!

which, on substitution of Eq.~13! yields

G~p,k!5
1

k122p22S~p,k!
, ~16!

with the self-energy given by

S~p,k!5
4prt ~m!

12rt ~m!C0~p,k!
. ~17!

In generalG(p,k) will have an infinite set of polespn ,
which define the real-space Green function via

G~R!5(
n

An

eipnR

R
, ~18!

each coefficientAn being determined by the residue o
G(p,k) at pn . The dominant polep0, which governs the
asymptotic form ofG(R), has the smallest imaginary par
For smallr we see from Eqs.~16! and~17! that it lies close
to k.

The coherent wave number may also be deduced from
spectral function

S~p,k!52
1

p
ImG~p,k!, ~19!

which exhibits a peak on the realp axis at p5Re(p0) of
half-width ~at half height! Dp5Im(p0)51/(2l s).

III. ANALYTICAL RESULTS
FOR THE HOLE-CORRECTION APPROXIMATION

To incorporate a description of correlation effects, v
Tiggelen and Lagendijk@15# made use of a simple step
function or hole-correction model, in which particles are e
cluded from a spherical region of radiusd @21# around a
given particle. Beyond this distance the distribution of oth
particles is assumed uniform.

Adopting this model, we now demonstrate the possibil
of an analytical solution to the multiple-scattering EMA
Winn and Logan@22# obtained a similar result for a tight
binding model, from which the present solution may be
covered by analytic continuation.

We first note that Eq.~8! for the total Green function
H(R) has the same form as the OZ equation of a sim
one-component fluid. The only difference is that the num
density is now multiplied by the complex quantityt (m),
which is determined self-consistently via Eq.~9!.

Now, in the case of the EMA, we may further exploit th
liquid-state analogy if we adopt the simple step-function
HC form

g~R!5H 0 for R,d

1 for R.d,
~20!
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2380 57C. J. WALDEN
for the pair-correlation function. Equation~11! then becomes

H~R!50 for R,d, ~21a!

C~R!5G0~R! for R.d. ~21b!

This bears a close resemblance to the mean-spherica
proximation~MSA! of liquid-state theory@16#, for which

h~R!50 for R,d, ~22a!

c~R!52bf~R! for R.d, ~22b!

with f(R) the particle-particle pair potential. Her
b5(kBT)21, T being the temperature andkB Boltzmann’s
constant. In the present contextbf(R) is clearly replaced by
exp(ik1R)/R, which corresponds to a hard-sphere fluid with
~complex! Yukawa potential. Since the Yukawa problem h
been solved elsewhere@23#, one may hope that a solution t
the present problem may be inferred by analytic contin
tion. This may be confirmed via a more rigorous derivatio
using the Wiener-Hopf method@20#. We give here a brief
résuméof the necessary arguments.

From Eq.~13! we may write~with k dependence under
stood!

11rt ~m!H~p!5@A~p!#21, ~23!

where

A~p!512rt ~m!FC0~p!1
4p

k122p2G . ~24!

Since we are dealing with a disordered system, we expec
coherent wave amplitude to decay with distance. Hen
RH(R)→0 asR→`, and the left hand side of Eq.~23! is
finite. This implies thatA(p) is free from zeros on the realp
axis. The Wiener-Hopf argument usually proceeds by sh
ing thatA(p) can be factored as

A~p!5Q~p!Q~2p!. ~25!

In the present case this relies on the fact thatk1 has a van-
ishingly small ~positive! imaginary part, which shifts the
poles ofA(p) off the realp axis. We may then show tha
12Q(p) is Fourier transformable, allowing us to defin
Q(R) via

2pt ~m!Q~R!5
1

2pE2`

`

e2 ipR@12Q~p!#dp. ~26!

It also follows that

Q~R!5H 0 for R,0,

Q0~R!1Deik1R for R.0,
~27!

where Q0(R) vanishes forR.d, and D is determined by
demanding continuity ofQ(R) at R5d.

The original problem may now be reexpressed in terms
two one-dimensional integral equations,
p-

-
,

he
e,

-

f

RC~R!52Q8~R!12prt ~m!E
R

`

Q~R82R!Q8~R8!dR8,

~28a!

RH~R!52Q8~R!

12prt ~m!E
0

`

Q~R8!~R2R8!H~ uR2R8u!dR8,

~28b!

the primes onQ denoting derivatives. Solution of these
achieved by exploiting the closure relation~21!. After some
straightforward but rather lengthy manipulation we arrive

RC0~R!5H 2s̃1~122s̃ !eik1R

12s̃2~cosk1R21! for R,d

0 for R.d,

~29!

wheres̃ is related to the renormalizedT matrix via

t ~m!5t@122iks̃ t#21, ~30!

and may be shown to satisfy

6h

~k1d!3
@2s̃2~cosk1d21!22s̃~eik1d21!1eik1d#2

2s̃~12s̃ !@2i s̃2~kt!21#50. ~31!

Clearly we must choose which of the possible solutions
Eq. ~31! is appropriate. Forh50 there are three finite solu
tions, of which onlys̃50 and 1 yield finitet (m). Of these,
only s̃50 reproduces the correct single-scattering lim
t (m)5t, and gives a positive spectral function. Forh.0 we
select the solution which develops continuously from this

The point-scatterer model studied by van Tiggelen a
co-workers@8,12–14# may be described by the bares-wave
T matrix

t5
21

k~D2 i !
. ~32!

It follows that the scattering efficiency is

Qs5
16

~kd!2@D211#
, ~33!

there being a resonance atD50, with D.0 (,0) corre-
sponding to frequencies below~above! this.

Clearly we may adjust the resonant value ofQs to some-
thing appropriate for describing a dielectric scatterer by va
ing kd. To begin with, let us consider the resonant ca
D50, and takekd51.5, which givesQs'7.1.

van Tiggelenet al. @8,12,14# introduced the dimensionles
parameter

h̃[
4pr

k3
~34!
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@here we use the tilde to distinguish this from the pack
fraction h, to which it is related viah̃524h/(kd)3]. They
consideredh̃ in the range 0–2, which for the above choice
kd corresponds to packing fractions up to 0.34. With the H
model we are restricted toh<1/8, beyond which the step
function g(R) is no longer physically attainable for spher
of uniform size. Larger packing fractions will be investigat
in Sec. IV.

Figure 1 shows the spectral function at a number of pa
ing fractions. We see a pronounced broadening of the s
tral width which appears to be largest aroundh'0.07. This
is reflected in the behavior of the coherent wave numberp0,
which satisfies

~k122p0
2!@12rt ~m!C0~p0 ,k!#24prt ~m!50. ~35!

Figure 2 showsneff[Re(p0)/k andg21[2Im(p0)/Re(p0),
the latter being directly related to the spectral width. P

FIG. 1. Spectral function within the HC approximation fo
kd51.5 andD50. The key indicates the value of packing fractio
h.

FIG. 2. Effective refractive indexneff ~dotted line! and inverse
‘‘Ioffe-Regel’’ number g21 ~solid line! found by solving Eq.~35!
for kd51.5 andD50 in the HC approximation. The renormalize

T matrix t (m) is given by Eq.~30!, with s̃ chosen as the solution o

Eq. ~31! which develops continuously froms̃50 ~with increasing
packing fractionh). The chained and dashed lines are the sa
quantities derived from the results of van Tiggelenet al.
g

f

-
c-

-

vided for comparison are the analogous quantities in
theory of van Tiggelenet al. In plotting these we have con
verted their values of disorder parameterh̃ into equivalent
packing fractions, having selectedkd51.5.

The results serve to emphasize the significant role wh
may be played by positional correlations. One obvious c
sequence is the appearance of a maximum in the EMA
sults forg21. The existence of this is well established bo
theoretically and experimentally, and we shall not dwell on
here. We merely note that an accurate prediction of its m
nitude and location demands that simultaneous accoun
taken of both short-range positional order and depend
scattering effects. Approaches based on either of these a
fail to capture the essential interplay.

The feature on which we focus attention is the upwa
curvature ofg21 at smallh. For independent scatterers, w
would expect a linear increase withh. The observed behav
ior corresponds to an enhancement of the effective scatte
efficiency,Qs

eff , over that for independent scatterers, as m
be seen from Fig. 3. This differs from the established fo
lore which argues that dependent scattering reducesQs

eff be-
low the single-scatterer value. The effect appears to b
direct consequence of the development of positional corr
tions in the system, and it is natural to ask whether one m
be able to tailor this short-range order in such a way as
reach a localization threshold. This falls in line with the vie
@24# that one of the most promising scenarios for localizat
is where both Mie and Bragg-like~i.e., structural! resonances
play a role.

We have observed similar behavior in other multip
scattering calculations, involving more realistic scatte
models@25#. Behavior of this kind was also observed som
time ago in experimental work on the transmission of lig
through TiO2-based pigment dispersions@26#, though at the
time its origin was not adequately explained.

To gain a better understanding of the role of correlatio
we need an improved theory forg(R) that is applicable at
larger packing fractions. One such theory is the Perc
Yevick ~PY! hard-sphere approximation to which we no
turn.

IV. INCORPORATING MORE REALISTIC
CORRELATION FUNCTIONS

To study the effects of a more realisticg(R) it is tempting
to contemplate using the asymptotic series

e

FIG. 3. Dependence of the effective scattering efficiencyQs
eff on

scatterer packing fractionh in the hole-correction EMA. The re-
sults are normalized to the single-scatterer efficiencyQs .
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2382 57C. J. WALDEN
g~R!511 (
n51

`

an

eianR

R
, ~36!

truncated at some finiten, and substituting this in Eq.~11! to
yield an approximate closure relation. Unfortunately the
ditional factor of R21 that this introduces gives rise to
branch cut inQ(p), which precludes use of the Baxte
method. Smith@27# arrived at a similar conclusion in study
ing the OZ equation for a fluid with a general short-rang
pair potential.

However, it is possible to make use of the Baxter meth
in an approximate numerical scheme. Since the correla
function h(R) becomes negligibly small whenR exceeds
some valueR0, we may, to a good approximation, s
h(R)50 for R.R0. From the EMA closure relation~11! we
now have

H~R!50 for R,d, ~37a!

C0~R!50 for R.R0 , ~37b!

g~R!C0~R!5h~R!H~R! for d<R<R0 . ~37c!

Q(R) may still be written in the form~27!, but nowQ0(R) is
nonzero in the interval (0,R0) andD is found by requiring
continuity atR0. It is no longer possible to find a solution i
closed form forC0(R). Instead we may employ

RC0~R!52Q08~R!

12prt ~m!E
0

R02R

Q08~R81R!Q~R8!dR8,

~38!

which may be derived from Eq.~28a!. This, together with
Eq. ~28b! is solved numerically, by making use of Eq.~37!.
For a given packing fraction the PYg(R) may be determined
from the hard-sphere OZ equation using an algorithm du
Goodwinet al. @28#.

An attractive feature of this method is that it provides
immediate impression~in real space! of the effects of short-
range order~SRO!. For example, Fig. 4 shows the form o
RC0(R) obtained in this way for two different packing frac
tions. Forh50.07 the graph shows a direct comparison
the results corresponding to PY and HC approximations
g(R). Clearly, in the former case, the presence of SRO
yond R5d causes a renormalization of the medium prop
gator. The effect is particularly noticeable at largerh, where
the presence of ‘‘shells’’ of nearest and next-nearest ne
boring spheres causes oscillations inC0(R).

As we can see from Fig. 5, the net effect of these str
tural correlations is an enhancement ofg21. Particularly
noteworthy is the extent to which the peak nearh50.07 has
narrowed and increased in height. It is apparent that the
tails of the SRO have a marked influence on the scatte
mean free path. Given the difficulties involved in establis
ing the correct regime for classical wave localization, a
modeling exercise ought sensibly to take account of s
details. In fact, examining the form of the PYg(R) leads one
to question whether further enhancement of the SRO m
provide an even greater increase ing21.
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To this end let us consider a system of hard spheres w
attractive pair potentials of the Yukawa form,

f~R!5H ` for R,d

2f0

exp~2kR!

R
for R.d,

~39!

where R is the distance between the particle centers. O
may think of this as a simple model potential for a monod
perse colloid. The value ofk may be adjusted to mimic the
typical range of attractive pair potentials generated by add
nonadsorbing polymer to the dispersion@29#. Such a model
has received some attention recently, due to its novel ph
behavior@30#.

For the present purposes this model is convenient, as
may employ the analytic expression for the OZ direct cor

FIG. 4. EMA results for the real~solid lines! and imaginary
~dashed lines! parts ofRC0(R) evaluated usingkd51.5,D50, and
PY correlation functions. Forh50.07 the chained and dotted line
show the corresponding quantities obtained using a HC approx
tion.

FIG. 5. g21 ~solid line! andneff ~dashed line! calculated in the
EMA using kd51.5, D50, and PY correlation functions.
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lation function, which exists in the mean-spherical appro
mation @23#. Making the choice f0d/(kBT)51.5 and
kd53.9 gives rise~for h50.07) to the pair-correlation func
tion shown in Fig. 6. The numerical values were found us
an extension of the Goodwinet al. algorithm @31#.

Our expectations regardingg21 appear to be borne ou
judging by the results in Fig. 7. This graph provides an
dication that a subtle interplay between scatterer-scatt
correlations and multiple scattering may enable a Ioffe-Re
criterion to be satisfied. Whether this coincides with the o
set of localization, however, is a matter for further investig
tion.

It is worth remembering also, that our calculations ha
so far been restricted toD50, corresponding to the bar
single-scatterer resonance. The effective scattering efficie
Qs

eff , on the other hand, generally exhibits a resonance wh
is shifted~in frequency! from the bare resonance. Consid
Fig. 8, for example, which showsQs

eff as a function ofD for

a fixed ‘‘overlap parameter’’h̃50.5. The nature of our cho
sen model enables us to examine the effects of increasing
SRO by makingkd larger, without the added complication o
simultaneously changing the strength of the scatterers.
pronounced asymmetry of the lower two graphs, which c
respond to packing fractions of 0.07 and 0.3, respectiv
shows how the development of positional correlations am
the scatterers can influence their collective behavior. In
cases the maximum inQs

eff occurs for a negative value ofD,
i.e., at a frequency above the bare resonance. Hence, a
been remarked elsewhere@14#, in searching for localization it
may be profitable to look at frequencies close to but
exactly at a single-scatterer resonance.

FIG. 6. Pair-correlation functionsg(R) at a packing fraction
h50.07. The solid line is the MSA result for Yukawa hard sphe
@f0d/(kBT)51.5, kd53.9], and the dashed line the PY har
sphere result.

FIG. 7. As Fig. 5 but using MSA Yukawa hard sphereg(R)
@f0d/(kBT)51.5, kd53.9].
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We must remember, however, that within the EMA reno
malization of the direct propagator is reliant on the prese
of correlations. While this mechanism may be the domin
one at high packing fractions, it is not clear at what value
h other processes begin to play a role. In particular, t
suggests that we exercise caution when interpreting the E
predictions forkd51.0, since they correspond to a packin
fraction h50.021.

Before concluding this section, we note that a number
other ~Fourier space! schemes exist for solving the EMA
@32–34#. The results reported here have been cross-chec

s

FIG. 8. EMA results~solid lines! for the effective scattering

efficiencyQs
eff as a function ofD for h̃50.5 and PY correlations

The dashed line for thekd51.0 case derives from the work of va
Tiggelen and Lagendijk@15#, while the dotted lines represent th
scattering efficiencyQs of the bare single scatterer. In each gra
the vertical scale is such thatQs51.0 on resonance.
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using an adaptation of the method of Fre´sard et al. @34#
which includes a prescription for avoiding possible proble
with nearly singular integrals. Following other reported e
perience in solving the EMA@33# Broyden’s quasi-Newton
algorithm @35# was employed to assist with convergence.

V. CONCLUSIONS

The influence of SRO on a system of resonant isotro
scatterers has been investigated within the EMA. Spe
cally, by exploiting the OZ analogy, we have shown that
analytic expression for the coherent wave dispersion rela
~35! may be found in the case of correlations modeled b
HC g(R). The derivation of this proceeds along the sa
lines as the study of a tight-binding model of a disorde
conductor by Winn and Logan@22#. The extension of this
approach to provide numerical results for more realis
forms of g(R) has been explored and shown to be straig
forward.

The results suggest a sensitive dependence of the effe
scattering cross section on the details of the SRO. In th
calculations we have deliberately considered onlys-wave
scatterers, in order to make contact with the work of v
Tiggelen and Lagendijk@15#. Clearly, recurrent scatterin
terms of the kind they incorporate are not included in
EMA, and, in keeping with the comments of the preced
section, it is natural to ask whether these might overshad
the effects of SRO. As Winn and Logan@22# have empha-
sized in connection with the metal-insulator transition, su
terms must be present if one is to reproduce the correct l
density behavior. This is important in the electronic cont
where one has a tight-binding picture and localization is
pected to occur in that regime. They proposed an exten
to the EMA, based on the theory of Elyutin@36#. Rewritten
om
,
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in a multiple-scattering language it may be summarized
the closure relation,

H~R!5
g~R!G0~R!

12t ~m!2G02~R!
1g~R!@H~R!2C~R!#. ~40!

The first term on the right hand side describes recurrent s
tering between pairs of scatterers. While this differs in fo
from the theory of van Tiggelen and Lagendijk@15#, it is
important to realize that, within theexactOZ formalism, this
is the simplest theory to incorporate recurrent scattering
SRO on an equal footing.

As may be seen from Eq.~8!, H(R)2C(R) depends ex-
plicitly on r, so that the recurrent scattering term represe
the dominant contribution at low density. We are curren
investigating the effects of such a term. However, in contr
with electronic systems, where a metal-insulator transit
obtains whenr→0, we do not expect this limit to be impor
tant for classical wave localization due to the absence
bound ‘‘atomic’’ states. In the electronic language, a loc
ized state must be formed by the constructive interferenc
scattering states. In fact, as John@24# has pointed out, we
must consider frequencies which, by analogy with the Sch¨-
dinger equation, correspond to energies above the hig
potential barrier. It is likely that we will need to turn th
presence of correlations to our advantage by carefully tai
ing the size and interactions between the scatterers.
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